A Cross-Sectional Analysis of Correlation Between Lipid Profile and HbA1c Among Non-Diabetics, Diabetics and Prediabetics
DOI:
https://doi.org/10.55489/njmr.150420251163Keywords:
Cholesterol, Glycosylated Hemoglobin, Triglycerides, Type 2 diabetes mellitusAbstract
Background: Diabetes mellitus (DM) leads to chronic increase in blood glucose levels which is measured by glycated haemoglobin (HbA1c) levels. Dyslipidaemia also increases risk of DM. Objectives: To identify correlation between HbA1c and lipid profile in normal, prediabetic and diabetic individuals.
Methods: A cross-sectional study was conducted for a duration of one month at a tertiary care hospital. Individuals diagnosed with diabetes and pre-diabetes based on their blood glucose levels for the first time were included in the study. Subjects with normal levels of glucose were included for comparison. Pearson correlation test was used to check correlation between HbA1c and lipid profile among three groups. P<0.05 was considered significant.
Results: 30 subjects were recruited in each of the three groups. HbA1c, fasting and postprandial blood glucose levels were significantly elevated in diabetic and prediabetic groups as compared to normal subjects (P <0.001). Among the lipid parameters, total cholesterol and triglycerides (TG) were significantly elevated in diabetic groups as compared to normal (P <0.05). Correlation assessment revealed significant weak positive correlation between HbA1c and total cholesterol among diabetics and pre-diabetics and between HbA1c and TG in diabetics (P <0.05).
Conclusion: Total cholesterol and TGs are correlated significantly with HbA1c in diabetic patients. Long-term studies must be conducted to understand the chronic implications of this correlation.
References
World Health Organization. Diabetes; 14 Nov 2024. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes. [Accessed May 31st, 2025]
Lee SH, Park SY, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J. 2022 Jan;46(1):15-37. DOI: https://doi.org/10.4093/dmj.2021.0280 PMID: 34965646 PMCID: PMC8831809 DOI: https://doi.org/10.4093/dmj.2021.0280
Pohanka M. Glycated Hemoglobin and Methods for Its Point of Care Testing. Biosensors (Basel). 2021 Mar 4;11(3):70. DOI: https://doi.org/10.3390/bios11030070 PMid:33806493 PMCid:PMC8000313 DOI: https://doi.org/10.3390/bios11030070
Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights. 2016 Jul 3;11:95-104. DOI: https://doi.org/10.4137/BMI.S38440 PMid:27398023 PMCid:PMC4933534 DOI: https://doi.org/10.4137/BMI.S38440
Peng J, Zhao F, Yang X, Pan X, Xin J, Wu M, Peng YG. Association between dyslipidemia and risk of type 2 diabetes mellitus in middle-aged and older Chinese adults: a secondary analysis of a nationwide cohort. BMJ Open. 2021 May 25;11(5):e042821. dDOI: https://doi.org/10.1136/bmjopen-2020-042821 PMid:34035089 PMCid:PMC8154929 DOI: https://doi.org/10.1136/bmjopen-2020-042821
Erion DM, Park HJ, Lee HY. The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities. BMB Rep. 2016 Mar;49(3):139-148. DOI: https://doi.org/10.5483/BMBRep.2016.49.3.268 PMid:26728273 PMCid:PMC4915228 DOI: https://doi.org/10.5483/BMBRep.2016.49.3.268
Bardini G, Rotella CM, Giannini S. Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro- and macrovascular complications. Rev Diabet Stud. 2012;9(2-3):82-93. DOI: https://doi.org/10.1900/RDS.2012.9.82 PMid:23403704 PMCid:PMC3700021 DOI: https://doi.org/10.1900/RDS.2012.9.82
Tagore R, Jabeen A, Latha VLA, Rahman A, Sankeerthi S, Kumar KC. Association of HbA1c with Dyslipidemia in type 2 diabetic patients. MedPulse International Journal of Biochemistry. 2020;14(2):1-5. DOI: https://doi.org/10.26611/10021421 DOI: https://doi.org/10.26611/10021421
Hussain A, Ali I, Ijaz M, Rahim A. Correlation between hemoglobin A1c and serum lipid profile in Afghani patients with type 2 diabetes: hemoglobin A1c prognosticates dyslipidemia. Ther Adv Endocrinol Metab. 2017;8(4):51-57. DOI: https://doi.org/10.1177/2042018817692296 PMCid:PMC5415005 DOI: https://doi.org/10.1177/2042018817692296
American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care. 2024 Jan 1;47(Suppl 1):S20-S42. DOI: https://doi.org/10.2337/dc24-S002 PMid:38078589 PMCid:PMC10725812 DOI: https://doi.org/10.2337/dc24-S002
Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66(6):986-1002. DOI: https://doi.org/10.1007/s00125-023-05891-x PMid:36897358 PMCid:PMC10163139 DOI: https://doi.org/10.1007/s00125-023-05891-x
Nordström A, Hadrévi J, Olsson T, Franks PW, Nordström P. Higher Prevalence of Type 2 Diabetes in Men Than in Women Is Associated With Differences in Visceral Fat Mass. J Clin Endocrinol Metab. 2016;101(10):3740-3746. DOI: https://doi.org/10.1210/jc.2016-1915 PMid:27490920 DOI: https://doi.org/10.1210/jc.2016-1915
Chandra A, Neeland IJ, Berry JD, Ayers CR, Rohatgi A, Das SR, et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J Am Coll Cardiol. 2014;64(10):997-1002. DOI: https://doi.org/10.1016/j.jacc.2014.05.057 PMid:25190234 DOI: https://doi.org/10.1016/j.jacc.2014.05.057
Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10(4):174-188. DOI: https://doi.org/10.4103/ajm.ajm_53_20 PMid:33437689 PMCid:PMC7791288 DOI: https://doi.org/10.4103/ajm.ajm_53_20
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. DOI: https://doi.org/10.1186/s12933-018-0762-4 PMid:30170598 PMCid:PMC6119242 DOI: https://doi.org/10.1186/s12933-018-0762-4
Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015 Sep 29;14:121. DOI: https://doi.org/10.1186/s12944-015-0123-1 PMID: 26415887 PMCID: PMC4587882 DOI: https://doi.org/10.1186/s12944-015-0123-1
Artha IMJR, Bhargah A, Dharmawan NK, Pande UW, Triyana KA, Mahariski PA, Yuwono J, Bhargah V, Prabawa IPY, Manuaba IBAP, Rina IK. High level of individual lipid profile and lipid ratio as a predictive marker of poor glycemic control in type-2 diabetes mellitus. Vasc Health Risk Manag. 2019 Jun 5;15:149-157. DOI: https://doi.org/10.2147/VHRM.S209830 PMid:31239693 PMCid:PMC6560183 DOI: https://doi.org/10.2147/VHRM.S209830
Kumar S, Kumari B, Kaushik A, Banerjee A, Mahto M, Bansal A. Relation Between HbA1c and Lipid Profile Among Prediabetics, Diabetics, and Non-diabetics: A Hospital-Based Cross-Sectional Analysis. Cureus. 2022;14(12):e32909. DOI: https://doi.org/10.7759/cureus.32909 DOI: https://doi.org/10.7759/cureus.32909
Alves-Bezerra M, Cohen DE. Triglyceride Metabolism in the Liver. Comprehensive Physiology. 2017;8(1):1-8. DOI: https://doi.org/10.1002/j.2040-4603.2018.tb00008.x PMid:29357123 PMCid:PMC6376873 DOI: https://doi.org/10.1002/j.2040-4603.2018.tb00008.x
VinodMahato R, Gyawali P, Raut PP, Regmi P, Singh KP, Pandeya DR, et al. Association between glycaemic control and serum lipid profile in type 2 diabetic patients: Glycated haemoglobin as a dual biomarker. Biomed Res (Aligarh). 2011;22(3):375-380.
Firdous S, Khan M. Comparison of patterns of lipid profile in type-2 diabetics and non-diabetics. Ann King Edw Med Univ. 2007;13(1):84-87. DOI: https://doi.org/10.21649/akemu.v13i1.4780 DOI: https://doi.org/10.21649/akemu.v13i1.4780
Sharahili AY, Mir SA, ALDosari S, Manzar MD, Alshehri B, Al Othaim A, Alghofaili F, Madkhali Y, Albenasy KS, Alotaibi JS. Correlation of HbA1c Level with Lipid Profile in Type 2 Diabetes Mellitus Patients Visiting a Primary Healthcare Center in Jeddah City, Saudi Arabia: A Retrospective Cross-Sectional Study. Diseases. 2023 Oct 31;11(4):154. DOI: https://doi.org/10.3390/diseases11040154 PMid:37987265 PMCid:PMC10660465 DOI: https://doi.org/10.3390/diseases11040154
Alnidawi BF. Association between glycaemic control and serum lipid profile in type 2 diabetic patients: Glycatedhaemoglobin as a dual biomarker. Al-Kindy Col Med J. 2015;11(2):10-14.
Ketema EB, Kibret KT. Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis. Arch Public Health. 2015;73:43. DOI: https://doi.org/10.1186/s13690-015-0088-6 PMid:26413295 PMCid:PMC4582842 DOI: https://doi.org/10.1186/s13690-015-0088-6
Liu X, Yang X, Wu N. Relationship Between Glycosylated Hemoglobin Variability and the Severity of Coronary Artery Disease in Patients With Type 2 Diabetes Mellitus. J Diabetes Res. 2024 Aug 1;2024:9958586. DOI: https://doi.org/10.1155/2024/9958586 PMid:39118831 PMCid:PMC11309811 DOI: https://doi.org/10.1155/2024/9958586
Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, et al. Glycated Hemoglobin, Diabetes, and Cardiovascular Risk in Nondiabetic Adults. N Engl J Med. 2010;362(9):800-811. DOI: https://doi.org/10.1056/NEJMoa0908359 PMid:20200384 DOI: https://doi.org/10.1056/NEJMoa0908359
Liu L, Ye J, Ying M, Li Q, Chen S, Wang B, et al. The U-Shape Relationship Between Glycated Hemoglobin Level and Long-Term All-Cause Mortality Among Patients With Coronary Artery Disease. Front Cardiovasc Med. 2021;8:632704. DOI: https://doi.org/10.3389/fcvm.2021.632704 PMid:33718455 PMCid:PMC7952311 DOI: https://doi.org/10.3389/fcvm.2021.632704
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Taruna Gogia, Namrata Kaushik, Gunjan Jain

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Author/s retain the copyright of their article, with first publication rights granted to Medsci Publications.