ORIGINAL ARTICLE

A Study on the Anatomical Variations of Occipital Condyles in the Dry Adult Human Occipital Bones

Anwesa Pal ${ }^{1}$, Prerana Aggarwal ${ }^{2}$, Asis Kumar Ghosal ${ }^{3}$, Indra Datta ${ }^{3}$, Shirshendu Ganguly ${ }^{4}$
Authors'Affiliation: ${ }^{1}$ Demonstrator, Dept of Anatomy, IPGME\&R, Kolkata; ${ }^{2}$ Associate Professor, Dept of Anatomy, Burdwan Medical College, Burdwan; ${ }^{3}$ Professor, Dept of Anatomy, IPGME\&R, Kolkata; ${ }^{4}$ Assistant Professor, Dept of Anatomy, Calcutta Medical College \& Hospital, Kolkata
Correspondence: Dr. Prerana Aggarwal, Email: dr_prerana@yahoo.com, Mobile No.: 9163820902

Abstract

Objective: The aim of the study is to describe the morphological and morphometric variations of bilateral Occipital condyles (OC) present in dry adult human occipital bones which are anatomically and surgically important structures.

Methodology: 150 dry adult occipital bones were studied for the presence of protrusion of the OC into the Foramen Magnum (FM). The length and width of the OC along with the distance of its posterior end from opisthion, distance of its anterior end from basion and the distance of the hypoglossal canal (HC) from its posterior end were measured bilaterally. Presence of posterior condylar foramen (PCF) was noted. Results were analysed statistically and compared with the results of previous studies. Results:Of 150 cases 119 (79.33%) were found to have bilaterally protruded occipital condyles and 11 (7.33%) showed protrusion at either side (p value <0.0001). Comparison between variables gives statistically significant difference between right and left distance of anterior end of occipital condyles from the basion (P value $=0.0305)$. PCF was found to be present in 90 out of 150 cases (60%) on the right side, 113 cases (75.33%) on the left side.

Conclusion: Since there is a wide variation in the anatomy of occipital condyles all over the world, the neurosurgeons, anatomists, morphologists and anthropologists should be familiar with the morphology and morphometry of the same in our part of the country. It will help in performing surgeries with minimal damage. Furthermore, the result of the study can be used for teaching and research purposes.

Key words: Far lateral transcondylar approach, Posterior condylar foramen, Hypoglossal canal

INTRODUCTION

The posterior part of the cranial base is largely formed by the occipital bone. The occipital condyles (OC) are related medially to the foramen magnum, laterally to jugular foramen, behind to condylar fossa which may sometimes be traversed by posterior condylar canals/foramen (PCF) and above by the hypoglossal canal. Below it articulates with the atlas to form atlano-occipital joint. ${ }^{1}$ Being an integral component of craniovertebral region it is predisposed to a variety of traumatic, degenerative and neoplastic diseases which require surgical interventions for successful management. ${ }^{2}$

Advances in skull base approaches have improved surgical exposure leading to better and wider access for successful surgery. Lateral approaches are being increasingly used to access lesions ventral to the brainstem and cervico-medullary junction. Different forms of lateral approaches include the transfacetal approach, the partial or complete transcondylar approach, the extreme-lateral transjugular approach and
the transtubercular approach. Most of these approaches require complete or partial resection of the occipital condyles which are related to a number of important vessels and nerves. Special attention has to be given to the presence of PCF which if present changes the anatomy of important vessels and nerves present in the surrounding area.

The dimensions and orientation of the occipital condyle may influence the choice of surgical approach for correction of the lesions of the afore-mentioned area. The purpose of the present study was to conduct a morphometric analysis of the occipital condyle as it pertains to the transcondylar approach and being an important part of the cranio-vertebral junction, connecting the cranium to the upper cervical spine.

MATERIALS AND METHODS

A descriptive morphometric study was performed over 150 dry adult occipital bones collected from the
department of Anatomy of different medical colleges in Kolkata and Burdwan, West Bengal.Malformed, non-ossified or broken bones were excluded. The presence or absence of protrusion of the OC into the Foramen Magnum (FM) was noted. The length (distance between the most anterior and the most posterior points) and width (transverse distance at the maximum width) of the OC, distance of its posterior end from opisthion, distance of its anterior end from basion and the distance of the hypoglossal canal (HC) from its posterior end were measured bilaterally. Presence of PCF was also noted. All measurements were donewith Vernier slide calipers. The mean value of the threeobservations was taken in each case to avoid observational bias.Data of various morphometric parameters was expressed with the mean, standard deviation, 25th, $75 \mathrm{th}, 10^{\text {th }}, 90^{\text {th }}, 5 \mathrm{th}$ and 95 th percentile value. Categorical data was summarized as counts and percentages. Key variables were expressed with the 95% confidence intervals. Right and left were compared by t-test or Mc Ne-
mar's Chi-square test with the help of Statistica version 6 [Tulsa, Oklahoma: StatSoft Inc., 2001] and MedCalc version 11.6 [Mariakerke, Belgium: MedCalc Software 2011]. All variables were normally distributed by Kolmogorov-Smirnoff goodness of fit test.

RESULTS

Mean values \pm SD and 95% confidence interval of all the measurements are given in Table1. Of 150 cases, 119 (79.33%) had bilaterally protruded occipital condyles, 11 show protrusion at either side. Fisher's exact t-test p value $=0.0001$ (Table 2). Comparison between variables give statistically significant difference between right and left side distance of anterior end of occipital condyles from the basion(Paired t - test p value $=0.0305$) (Table3). PCFwas found to be present in 90 out of 150 cases (60%) on the right side, 113 cases (75.33%) on the left side. (McNemar's Chi-square test p value $=0.005$)(Table4)

Table 1: Descriptive statistics of study related dimensions - Whole cohort [$\mathrm{n}=150$]

Parameters	Range	Mean \pm SD	$\mathbf{9 5 \%} \mathbf{C I}$
Length of occipital condyle (right)	$16.38-28.88$	22.69 ± 2.54	$22.28-23.09$
Length of occipital condyle (left)	$17.50-28.52$	22.50 ± 2.49	$22.10-22.91$
Width of occipital condyle (right)	$9.18-18.90$	12.65 ± 1.98	$12.33-12.97$
Width of occipital condyle (left)	$8.54-17.10$	12.69 ± 2.04	$12.36-13.02$
Distance of anterior end of occipital condyle from basion (right)	$5.80-16.88$	9.89 ± 2.21	$9.54-10.25$
Distance of anterior end of occipital condyle from basion (left)	$4.72-14.10$	9.55 ± 2.01	$9.22-9.87$
Distance of posterior end of occipital condyle from opisthion (right)	$19.56-32.40$	26.70 ± 2.46	$26.30-27.10$
Distance of posterior end of occipital condyle from opisthion (left)	$20.30-31.84$	26.52 ± 2.30	$26.15-26.89$
Distance of hypoglossal canal from posterior end of occipital condyle (rt)	$6.60-16.49$	10.05 ± 2.23	$9.69-10.41$
Distance of hypoglossal canal from posterior end of occipital condyle (lt)	$5.90-15.78$	10.20 ± 1.97	$9.88-10.52$

Table2. Comparison between categorical variables

	Occipital condylar protruberance (left) present	Occipital condylar protruberance (left) absent
Occipital condylar protruberance (right) present	119	8
Occipital condylar protruberance (right) absent	3	20

P value <0.0001

Table 3: Comparison between numerical variables

Parameters	Right ($\mathbf{m} \pm \mathbf{s d}$)	Left ($\mathbf{m} \pm$ sd)	P value
Length of occipital condyle	22.68 ± 2.54	22.50 ± 2.49	0.210
Width of occipital condyle	12.65 ± 1.98	12.69 ± 2.04	0.7134
Distance of posterior border of occipital condyle from opisthion	26.69 ± 2.46	26.52 ± 2.30	0.3441
Distance of anterior border of occipital condyle from basion	9.89 ± 2.21	9.55 ± 2.01	0.0305
Distance of hypoglossal canal from posterior border of occipital condyle	10.05 ± 2.23	10.20 ± 1.97	0.2793

Table 4: Comparison between categorical variables

	Posterior condylar foramen (left) present	Posterior condylar foramen (left) absent
Posterior condylar foramen (right) present	71	19
Posterior condylar foramen (right) absent	42	18
P		

[^0]
DISCUSSION

Avci E et al in 2011 stated that protrusion of the OC into FM, especially in the ovoid type may indicate more extensive bony removal during surgery. ${ }^{3}$ Inpresent study protrusion is found in 84.67% cases on right side and 81.33% on left side.Table 5 shows the result of the present study was close to that done by Natsis K. et alin 2013 where they found 86.7% protrusion bilaterally. ${ }^{4}$

According to Down et al., for visualizing the contralateral jugular tubercle, the average length of the OCnecessary for resection was minimum $17 \mathrm{~mm} .{ }^{5}$ Average OC length in the present study is found to be $22.69 \pm 2.539 \mathrm{~mm}$ and $22.50 \pm 2.489 \mathrm{~mm}$ for right and left sides respectively. Comparative values of different parameters among different studies are given
in Table 6. Mean length of OC of left side seems similar to that reported byKavithaS et al while that of right side is found closer toFetouh F.A.et al.6,7 It is seen that the mean of width of OC of both sidesin present study is very similar to that of Avci E et al. ${ }^{3}$

Muthukumar N et al mention that the distance of the posterior end of OCfrom opisthion is important because a longer corridor provides a wider space for a far lateral transcondylar approach. ${ }^{8}$ This distance on both the sides in the present studycorresponds with that of Naderis et al ${ }^{9}$ (Table 6). The mean distance of anterior end of OCfrom basion on right side iscloser to that found by Avci E. et althan on the left side ${ }^{3}$ (Table 6).No third occipital condyle was found in our study as found by Saralaya VV et al in 2012. ${ }^{10}$

Table 5.Comparison of protrusion of OC

Study name	Right side present	Right side absent	Left side present	Left side absent
Muthukumar N. et al (2005)	20%	80%	20%	80%
Avci E. et al $(2011)^{3}$	57%	43%	57%	43%
Chethan P. et al $(2012)^{15}$	20.7%	79.3%	20.7%	79.3%
Natsis K. et al $(2013)^{4}$	86.7%	13.3%	86.7%	13.3%
Present study	$\mathbf{8 4 . 6 7 \%}$	$\mathbf{1 5 . 3 3 \%}$	$\mathbf{8 1 . 3 3 \%}$	$\mathbf{1 8 . 6 7 \%}$

Table 7: Comparison of frequency of Posterior Condylar Foramen between different Studies

Study name	Present in right side	Absent in right side	Present in left side	Absent in left side
Muthukumar N et al $(2005)^{8}$	92%	8%	68%	32%
Pereira G.A.M. et al $(2012)^{13}$	58.5%	41.5%	65.9%	34.1%
Present study	60%	40%	75.33%	24.67%

Hypoglossal nerve which passes through the hypoglossal canal (HC), if damaged may lead to an alteration in the tongue movement and speech later on. ${ }^{1}$ Hence the knowledge of the distance between HC and the posterior end of OC is important to avoid its damage during the surgery. The mean distance of HC from posterior end of OC that we found (Rt side: $10.05 \pm 2.228 \mathrm{~mm}$, Lt side: $10.20 \pm 1.974 \mathrm{~mm}$)is close to that found byAvci et al ${ }^{3}$ and Pereira et al ${ }^{13}$ (Table 6)
Hollinshead has mentioned that the posterior condylar canal opens at the groove for sigmoid sinus, posterolateral to the jugular foramen in the posterior cranial fossa. ${ }^{11} \mathrm{PCF}$ maybe the additional route of drainage of intracranial veins into extracranial veins. Posterior condylar veins leave the skull through the posterior condylar canal and it is an alternative source in a dysfunction of the venous drainage of the sigmoid-jugular complex. ${ }^{12}$ Damage to this vein during surgery may lead to excessive bleeding which if not foreseen may lead to fatality. Table 7 shows that in present study there is predominance of PCF on left side as is also reported by Pereira et al ${ }^{13}$ andBayat P et al ${ }^{14}$. Muthukumaret al on the other hand reports left side PCF predominance. ${ }^{8}$ Our studyas well as
studies done by Muthukumar et al and Pereira et almention that most of the bones studied show presence of PCF rather than its absence which is contradicted by Bayat P et al study done in 2014. Left side results of our study also correspond with Muthukumar et al and Pereira et al.

CONCLUSION

A significant number of cases in the present study were found to have bilaterally protruded occipital condyles.The difference between right and left distance of anterior end of occipital condyles from the basion was also found to be statistically significant. The presence of PCF on either side was also not a chance finding. Overall morphometry of OC is found to differ from that reported in the studies from different parts of the world as well as within the country. These variations may be attributed to the different methods by which the data were collected in different studies \&/or to the different genetic and environmental factors affecting the different populations.

Table 6: Comparision between different parameters among different studies [Values are in millimeter (Mean \pm S.D)] (part a and b)

Part a

Parameter (part A)	Length of OC		Width of OC		Distance of anterior end of OCfrom basion		
	Right	Left	Right	Left	Right	Left	
Present study	22.69 ± 2.54	22.50 ± 2.4489	12.65 ± 1.98	12.69 ± 2.04	9.89 ± 2.21	9.55 ± 2.01	
Naderi S. et al (2005) ${ }^{9}$	23.6 ± 2.5	23.2 ± 2.4	10.6 ± 1.4	10.6 ± 1.4	10.5 ± 1.5	11.1 ± 1.5	
Fetouh F.A. ${ }^{7}$	23.5 ± 2.53	23.75 ± 2.5	13.58 ± 1.82	13.62 ± 1.71	11.1 ± 2.1	11.3 ± 2.1	
Barut et al (2009) ${ }^{16}$							
Avci E. et al (2011) ${ }^{3}$	23.7 ± 2.6	24 ± 2.7	12.2 ± 1.2	12.4 ± 1.5	9.9 ± 1.9	10.0 ± 2.00	
Pereira G.A.M. et al (2012) ${ }^{13}$	24.0+/-3.6	23.3 ± 2.6	13.4 ± 1.4	16.4 ± 1.6			
Natsis K. et al (2013) ${ }^{4}$	25.60 ± 2.91	25.60 ± 2.70	13.09 ± 1.99	13.01 ± 1.98			
Bayat P et al (2014) ${ }^{14}$	9.21 ± 1.97	9.40 ± 1.87	9.21 ± 1.97	9.40 ± 1.87			
Kavitha S. et al (2014) ${ }^{6}$	21.97	22.34					
Melissa et al (2014) ${ }^{17}$					10.81 ± 0.31	11.36 ± 0.25	
Tale AK et al (2016) ${ }^{18}$	21.83 ± 2.99	22.19 ± 3.31	11.07 ± 2.41	11.42 ± 2.31			
Part b							
Parameter (part b)	Distance of posterior endof OC from opisthion M				Mean distance of HC from posterior end of OC		
	Right		Left		Right	Left	
Present study	26.70 ± 2.46		26.52 ± 2.30		10.05 ± 2.23	10.20 ± 1.98	
Naderi S. et al (2005) ${ }^{9}$	26.7 ± 2.4		26.2 ± 2.2				
Fetouh F.A. ${ }^{7}$	27.87 ± 3.37		27.94 ± 3.21				
Barut et al (2009) ${ }^{16}$	26.6 ± 1.8			12.5		12.6	
Avci E. et al (2011) ${ }^{3}$					9.9 ± 1.4		
Pereira G.A.M. et al (2012) ${ }^{13}$	26.6 ± 1.8			27.1 ± 2.6		10.3 ± 2.5	11.3 ± 2.1
Natsis K. et al (2013)4 ${ }^{4}$							
Bayat P et al (2014) ${ }^{14}$							
Kavitha S. et al (2014) ${ }^{6}$							
Melissa et al (2014) ${ }^{17}$							
Tale AK et al (2016) ${ }^{18}$							

The data obtained in the present study will be of help to the neurosurgeons in analysing the morphological anatomy of cranio-vertebral junction. Surgeons, specially those from our part of country will be benefitted as the study gives an idea about the amount of bone that can be safely removed without violating the HC and giving a wide exposure on far lateral transcondylar approach.The findings are also useful for theclinical anatomists, morphologists and anthropologists for the purpose of teaching and further research work.

REFRENCES

1. Standring S. Head and Neck. In: Gray's Anatomy: The Anatomical Basis of Clinical Practice. $41^{\text {st }}$ ed. London, Churchill Livingstone Elsevier, 2016;397-435.
2. Saluja S, Das S S, Vasudeva N. Morphometric Analysis of the Occipital Condyle and Its Surgical Importance. J ClinDiagn Res. 2016 Nov; 10(11): AC01-AC04
3. Avci E, Dagtekin A, Ozturk AH, Kara E, OzturkNC, Uluc Ket al.Anatomical Variations of the Foramen Magnum, Occipital Condyle and Jugular Tubercle. Turkish Neurosurgery 2011; 21(2):181-190.
4. Natsis K, Piagkou M, Skotsimara G, Piagkos G, Skandalakis P. A morphometric anatomical and comparative study of the foramen magnum region in a Greek population. Surgical and Radiologic Anatomy 2013; 35(10):925-34.
5. Dowd GC, Zeiller S, Awasthi D. Far lateral transcondylar approach:Dimensional anatomy. Neurosurgery 1999; 45(1):95-100.
6. Kavitha S, Chandrasekaran S, Anand A, Shanthi K.Morphometric study of occipital condyles in adult human skulls. IJCRR 2013; 5(15): 31-34.
7. Fetouh FA, Awadalla AM. Morphometric analysis of the occipital condyle and its surgical implications in transcondylarapproach.PANS 2009.
8. Muthukumar N, Swaminathan R, Venkatesh G, Bhanumathy SP. A morphometric analysis of the foramen magnum region as it relates to the transcondylar approach. ActaNeurochirurgica 2005; 147 (8):889-895.
9. Naderi S, Korman E, Citak G, Guvencer M, Arman C, Mehmet Set al. Morphometric analysis of human occipital condyle. Clinical Neurology and Neurosurgery 2005; 107(3): 191-199.
10. Saralaya VV, Murlimanju BV, Vaderav R, Tonse M, Prameela MD, Jiji PJ. Occipital condyle morphometry and incidence of condylus tertius: phylogenetic and clinical significance. ClinTer. 2012Nov; 163(6):479-82.
11. Hollinshead W H and Rosse C. Textbook of Anatomy 4th Edition, New York, Harper And Row, Philadelphia (1985) 871.
12. Thompson, D N P, Hayward R D, Harkness W J, Bingham R M, Jones B M. Lessons from a case of kleeblattschädel. Case report. J. Neurosurg. 1995 June; 82(6):1071-74.
13. Pereira G. A. M., Lopes P. T. C., Santos A. M. P. V., Duarte R. D., Piva L., Pozzobon A. Morphometric Analysis Related to the Transcondylar Approach in Dry Skulls and Computed Tomography. Int. J. Morphol. 2012; 30(2):399-404.
14. Bayat P, Bagheri M,Ghanbari A, Raoofi A.Characterization of Occipital Condyle and Comparison of its Dimensions with Head and Foramen Magnum Circumferences in Dry Skulls of Iran. Int. J. Morphol. 2014; 32(2):444-448.
15. Chethan P, Prakash KG, Murlımanju BV, Prashanth KU, Prabhu LV, Saralaya VVet al.Morphological Analysis and Morphometry of theForamen Magnum: An Anatomical Investigation. Turkish Neurosurgery 2012; 22(4): 416-9.
16. Barut N, Kale A, Suslu HT, Ozturk A, Bozbuga M, Sahinoglu K. Evaluation of the bony landmarks in transcondylar approach. Brit J of Neurosurgery 2009 July, 23(3):276-81.
17. Melissa LP, Auquilla L, Akintayo R, Nwogu N,Yilmaz CE. Morphometric analysis of the bony structures associated with the transcondylar approach. FASEB Journal 2014 April; 28:915.15
18. Tale AK, KulkarniPR, Shaikh SI, Fupare SS. Morphometric study of the occipital condyle and its surgical importance. IJAR 2016; 4(1): 1802-05.

[^0]: P value $=0.005$

