ORIGINAL ARTICLE

DRUG UTILIZATION STUDY ON ANTIMICROBIAL USE IN URINARY TRACT INFECTION

Sunil S Gidamudi1, Sujata A Jadhav2, Chitra C Khanwelkar3, Vandana M Thorat2, Rohit R Desai4, Harish G Naik5

Author’s Affiliations: 1Assistant Professor, Dept of Pharmacology, B. K. L. Walawalkar Rural Medical College, Kasarwadi; 2Professor; 3Professor & HOD; Dept of Pharmacology, Krishna Institute of Medical Sciences, Karad, Maharashtra; 4Senior Pharmacovigilance Physician, Quintiles India Pvt Ltd., Bangalore, Karnataka; 5Assistant Professor, Dept of Pharmacology, Kanachoor Institute of Medical Sciences, Deralakatte, Mangalore, Karnataka.

Correspondence: Dr. Sunil S Gidamudi, Email: sunilsg.jnmc@gmail.com

ABSTRACT

Introduction: Antimicrobials are prescribed commonly for urinary tract infection. But if not used rationally then there will be increase chances of resistance of bacteria as well as increase in duration of morbidity and total cost of therapy. This study was conducted to throw light the antimicrobial utilization pattern.

Aim: To study and analyze the pattern of antimicrobial utilization in UTI.

Method: A descriptive retrospective study was conducted in tertiary care hospital for 6 months. Case sheets diagnosed with UTI were collected from medical records department (MRD). The demographic data and prescription pattern of each case sheet were evaluated. The data obtained was subjected to descriptive statistical analysis using Microsoft excel.

Result: Total 108 patients were included in the study, out of which 44.4% were males and 55.6% were females. Most of the patients were in 40-60 years age group (40.7%). UTI confirmed by culture in 59.26% patients; in which E.coli was isolated in 35.9% patients followed by Klebsiella species (14.06%) and Pseudomonas aerugenaos (7.8%). The World Health Organization (WHO) indicators (utilization in defined daily doses (DDD); DDD/1000inhabitant/day) were used and the ATC/DDD method was implemented. The most commonly prescribed antimicrobial was ceftriaxone followed by cefixime and azithromycin.

Conclusion: The DDD/1000inhabitant/day of ceftriaxone was the highest (12.9). Third generation cephalosporins were used as first line drug in most cases. This group should be reserved for complicated UTIs.

Key words: DDD (defined daily dose), WHO indicators, ceftriaxone, generic names.

INRODUCTION

Drug utilization has been defined as the marketing, distribution, prescription and use of drugs on society with special emphasis on the resulting medical and social consequences.1 Drug utilization studies are playing a major role in identifying any faults in the therapy and also find out solutions to rectify the same.

Rational drug prescribing is defined as “the use of the least number of drugs to obtain the best possible effect in the shortest period and at a reasonable cost.”2-4 Monitoring of prescription and drug utilization studies could identify the associated problems and provide feedback to the prescriber so as to create awareness about the irrational use of drugs.5-7 It is necessary to define the prescribing pattern and to target the irrational prescribing habit for sending remedial message.8

Urinary tract infection (UTI) is defined as the presence of bacteria in urine along with symptoms of infection.9 UTI is an extremely common condition
that occurs in both male and female of all the ages. The prevalence and incidence of UTI is higher in women than in men due to several clinical factors including anatomical differences, hormonal effects and behavioral pattern.10Etiology is influenced by factors such as age, diabetes, spinal cord injury, urinary catheterization, and other factors.11UTI is mostly caused by gram negative aerobic bacilli found in GI tract. These are \textit{E. coli}, \textit{Klebsiella}, \textit{Enterobacter}, \textit{Citrobacter} and \textit{Proteus}. Other common pathogens include \textit{Staphylococcus epidermidis}, \textit{Staphylococcus saprophyticus} and \textit{Enterococcus species} which presumably result in UTI following colonization of the vagina or perianal skin.12

Drug utilization studies aids in commenting about unnecessary and irrational prescribing which increases burden of cost of therapy, also causes loss of working hours; either due to hospitalization or morbidity.13These are definitely not affordable for a developing country like India. In the recent years studies on drug utilization have become a potential tool to be used in the evaluation of health systems. The methodology used in these studies has mainly consisted in the comparison of consumption using defined daily doses (DDD) of the drugs consumed.

Drug utilization among outpatient is frequently monitored in many countries but the studies on inpatient are rare and incomplete. Studies of drug utilization in urinary tract infection are low. The objective of present study is to focus on the trends in the antimicrobial utilization in urinary tract infections. This information is not disease specific but reflects overall rates and illustrates trends in utilization of antimicrobials in the treatment of urinary tract infection.

MATERIALS AND METHODS

The study was conducted in the Department of Pharmacology, Krishna Institute Medical Sciences, Karad, Maharashtra. This is the retrospective record based study of patients admitted to Krishna Hospital and Research Centre, Karad, Maharashtra with diagnosis of UTI during the period of September 2012 to February 2013. The case sheets were collected from the medical records department (MRD) based on the ICD-10 disease coding. The demographic data and prescription pattern of each case sheet were evaluated in detail. The relevant investigations (microbiological and hematological) were noted down along with the urine culture report wherever available with the antimicrobial sensitivity testing. Comorbid conditions were noted down. Dose, frequency and duration of treatment with antimicrobial used to treat the urinary tract infection were recorded.

Anatomical therapeutic chemical (ATC) classification and defined daily dose (DDD) system was used for the quantification of drug utilization. Following formula of defined daily dose was used for calculation and results obtained were expressed in terms of defined daily dose per 1000 inhabitants per day (DDD/1000 inhabitants/day).14 DDD/1000 inhabitants/day may provide a rough estimate of the proportion of the study population that may be treated daily with certain drugs. Condition of patient at the time of discharge was also noted. Descriptive statistics were used to describe the antimicrobial utilization pattern.

\textbf{Formula:} $\text{DDD/1000 inhabitants/day} = \frac{\text{Total drug used (mg) during the study period \times 1000}}{\text{DDD(mg) \times Duration of study \times Total sample size}}$

Permission was obtained from the ethics committee of the institution for conducting the study. The purpose of the study was explained and confidentiality was ensured.

RESULTS

The study observed the drug utilization pattern to the patients treated to urinary tract infection in tertiary care teaching hospital, Karad. A total of 108 case records of the patients with different presenting symptoms were analysed. All the case records had the complete documentation of information, including patient’s demographic characteristics, diagnosis, culture and sensitivity wherever available, drug names, dose route and frequency of intake. Observations of the study are presented in the form of different tables.

Demographic characteristics showed UTI was more frequent in the age group of 40-60 years. UTI was equally frequent in both gender in <10 year age group; increased frequency in females from 10-60 years, but male had higher frequency after 60 years. (Table 1)
Table 1: The demographic data of patients

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Male (%)</th>
<th>Female (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>1 (50)</td>
<td>1 (50)</td>
<td>2 (1.9)</td>
</tr>
<tr>
<td>10-20</td>
<td>1 (25)</td>
<td>3 (75)</td>
<td>4 (3.7)</td>
</tr>
<tr>
<td>20-40</td>
<td>6 (31.6)</td>
<td>13 (68.4)</td>
<td>19 (17.6)</td>
</tr>
<tr>
<td>40-60</td>
<td>15 (34.1)</td>
<td>29 (65.9)</td>
<td>44 (40.7)</td>
</tr>
<tr>
<td>>60</td>
<td>25 (64.1)</td>
<td>14 (35.9)</td>
<td>39 (36.1)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>48 (44.4)</td>
<td>60 (55.6)</td>
<td>108 (100)</td>
</tr>
</tbody>
</table>

Table 2: Isolated organisms in urine culture

<table>
<thead>
<tr>
<th>Organisms</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Coli</td>
<td>23 (54.76)</td>
</tr>
<tr>
<td>P Aeruginosa</td>
<td>5 (11.90)</td>
</tr>
<tr>
<td>Proteus</td>
<td>3 (7.14)</td>
</tr>
<tr>
<td>Hemolytic Streptococci</td>
<td>2 (4.76)</td>
</tr>
<tr>
<td>Non Hemolytic Streptococci</td>
<td>2 (4.76)</td>
</tr>
<tr>
<td>Klebsiella Species</td>
<td>9 (21.42)</td>
</tr>
<tr>
<td>Coagulase +veStaphlococcus Aureus</td>
<td>5 (11.90)</td>
</tr>
<tr>
<td>Citrobacter Species</td>
<td>1 (2.38)</td>
</tr>
<tr>
<td>Candida Species</td>
<td>3 (7.14)</td>
</tr>
<tr>
<td>Acinobacter</td>
<td>1 (2.38)</td>
</tr>
</tbody>
</table>

Table 3: Antimicrobials resistant to E. coli

<table>
<thead>
<tr>
<th>Resistant to</th>
<th>No of E.coli (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>20 (86.95)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>19 (82.60)</td>
</tr>
<tr>
<td>Ticarcillin</td>
<td>18 (78.26)</td>
</tr>
<tr>
<td>Carbanicillin</td>
<td>17 (73.91)</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>16 (69.56)</td>
</tr>
<tr>
<td>Naldixic Acid</td>
<td>15 (65.21)</td>
</tr>
<tr>
<td>Bactrim</td>
<td>15 (65.21)</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>14 (60.80)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>14 (60.80)</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>10 (43.48)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>6 (26.08)</td>
</tr>
</tbody>
</table>

Table 4: Antimicrobials sensitive to E. coli

<table>
<thead>
<tr>
<th>Sensitive to</th>
<th>No of E.coli (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>21 (91.30)</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>13 (56.52)</td>
</tr>
<tr>
<td>Netilmicin</td>
<td>12 (52.17)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>9 (39.13)</td>
</tr>
<tr>
<td>Imipenem</td>
<td>5 (21.74)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>3 (13.04)</td>
</tr>
</tbody>
</table>

Table 5: Distribution of individual AMAs

<table>
<thead>
<tr>
<th>Group</th>
<th>Drug</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flouroquinolones</td>
<td>Ciprofloxacin iv</td>
<td>24 (22.22)</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin oral</td>
<td>10 (9.25)</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Amox.+ Clavul. acid iv</td>
<td>5 (4.62)</td>
</tr>
<tr>
<td></td>
<td>Amox.+ Clavul. acid oral</td>
<td>3 (2.77)</td>
</tr>
<tr>
<td></td>
<td>Piperacillin iv</td>
<td>4 (3.70)</td>
</tr>
<tr>
<td></td>
<td>β lactamase inhibitors</td>
<td>5 (4.62)</td>
</tr>
<tr>
<td></td>
<td>Tazobactam iv</td>
<td>6 (5.55)</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Ceftriaxone iv</td>
<td>61 (56.48)</td>
</tr>
<tr>
<td></td>
<td>Cefixime oral</td>
<td>20 (18.51)</td>
</tr>
<tr>
<td></td>
<td>Cefpodoxime oral</td>
<td>12 (11.11)</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Amikacin iv</td>
<td>14 (12.96)</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Azithromycin oral</td>
<td>19 (17.59)</td>
</tr>
<tr>
<td>Urinary antiseptics</td>
<td>Nitrofurantoin oral</td>
<td>12 (11.11)</td>
</tr>
</tbody>
</table>

*Amoxicillin + Clavulanic acid

Diabetes mellitus was most common comorbid condition followed by hypertension and renal or ureteric calculi. Urine culture was done in 59.26% (n=64) patients, out of which culture was positive in 65.63% (n=42) patients, sterile in 26.56% (n=17) patients and no significant growth in 7.81% (n=5) patients. In the remaining patients (n=44) the diagnosis was based on the clinical symptoms and microscopic examination of the urine which showed the presence of significant number of bacteria or pus cells. E. coli was the most common isolated organisms in urine culture. (Table 2)

Since E. coli (n=23) was the most common isolated organism, so the antimicrobial sensitivity pattern of E. coli has studied in detail. (Table 3 and 4) E. coli was resistant to ampicillin in 86.96% (n=20) patients and to ceftriaxone in 82.61% (n=19) patients and it was sensitive to amikacin in 91.3% (n=21) patients but to ceftriaxone only in 13.04% (n=3) patients.

Distribution of antimicrobial utilization was studied in detail. (Table 5) Cephalosporins were most commonly used antimicrobial followed by fluoroquinolones. Among the cephalosporins, third generation parenteral cephalosporins (ceftriaxone, cefotaxime, cefoperazone) were used most commonly and were switched over to the third generation oral cephalosporin (cefixime) in 20 patients after 4th or 5th day. Ciprofloxacin was the most commonly used fluoroquinolone which was shifted from parenteral to oral after 4 days in 10 patients. Among penicillins, amoxicillin + clavulanic acid combination was used in 9 patients followed by piperacillin + tazobactam.
in 4 patients. Amikacin was the most commonly used aminoglycoside.

Drug consumption data were expressed as defined daily doses (DDD) per 1000 inhabitants per day. The highest value of 12.91 DDD /1000 inhabitants /day was accounted for ceftriaxone indicating that it was the popular drug of choice as a broad spectrum antimicrobial agent, followed by azithromycin with the value of 5.68 DDD /1000 inhabitants /day. (Table 6)

<table>
<thead>
<tr>
<th>ATC code, DDD, PDD and DDD/1000 inhabitants/day of the drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Sulfonamides</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Penicillins</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>β-lactamase inhibitors</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cephalosporins</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Carbapenems</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
</tr>
<tr>
<td>Aminoglycosides</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
</tr>
<tr>
<td>Urinary antiseptics</td>
</tr>
</tbody>
</table>

Comparison of DDD and PDD (prescribed daily dose) was shown in Table 7. PDD>DDD was for the antimicrobials such as norfloxacin, ciprofloxacin, amoxicillin; PDD<DDD was for the antimicrobials such as ampicillin, amikacin, gentamicin and PDD=DDD was for the ofloxacin, levofloxacin and cefepime.

DISCUSSION AND CONCLUSION

In general practice, the therapeutic approach for urinary tract infection is primarily empirical and the
main aim of the physicians is to treat as specifically as possible. The present study indicates the general trends of use of antimicrobials in urinary tract infection.

Drug utilization studies have the potential to make objective evaluation and analysis of health professionals work and provide them with feedback to stimulate thinking about their practice and looking for ways to improve their own performance. These studies should become a method of increasing job satisfaction and means of education for health professionals, rather than being perceived as threat or another bureaucratic burden. Antibiotic resistance is an emerging problem and has become a major threat to the medical field. Excessive and inappropriate use of antibiotic has been a major contributor to this ever growing problem.

In contrast to the results of the study Qureshi AM., this study reveals frequency of UTI is equal in children of less than 10 years age in both male and female. Present study also reveals that the increased frequency of UTI in females in the age group of 40-60 years of age and increased frequency in males after the age of 60 years. This may be due the increased comorbid condition of diabetes mellitus in male patients after 60 years of age. These results coincide with Mahesh E. et al. and Pargavi B. et al.

As the results of the study Pargavi B. et al., present study also shows E. coli was the most commonly isolated organism in urine culture. Cephalosporins were the most common antimicrobial group used in this study which is similar to the study done by Bay AG. et al. wherein the study by J. Mohan et al. reveals amikacin is the most commonly used antimicrobial.

The PDD can vary according to both the illness treated and national therapy traditions. For anti-infective, for instance, PDDs vary according to the severity of the infection. The DDDs for most anti-infective are based on treatment of moderately severe infections. In hospital care, much higher doses are frequently used and this must be considered when using the DDD as a unit of measurement.

To conclude, third generation cephalosporins were used most commonly as first line drug, this group should be reserved for complicated UTIs. Periodic review of antimicrobial sensitivity should be done, to change the empirical treatment of urinary tract infections. These results highlight the need to educate the health care system to improve the adherence towards the standard guidelines for treatment of UTI.

REFERENCES

