ORIGINAL ARTICLE

Study of Candida Species and its Antifungal Susceptibility Pattern in a Tertiary Care Hospital

Sravanthi Reddy Pagala¹, Mina T Kadam², Sanjay D Rathod³

Authors’ affiliations: ¹Ph.D scholar; ²Professor & Head; ³Associate professor, Dept. of Microbiology, AMC MET Medical College, LG Hospital, Gujarat University
Corresponding Author: Dr. Sanjay D Rathod, Email: sdrathod1208@yahoo.in, Mobile No.: 9979877495

ABSTRACT

Introduction: Opportunistic infections by Candida spp are becoming quite common in hospitals today with antifungal resistance, an increasing problem in many wards. Candida albicans has been the commonest species causing infection for many years but indiscriminate use of azole group of drugs has led to increase in NCA infection and resistance to antifungal drugs in Candida species.

Methodology: Duration of the study was from 7th June-2018 to 12th Mar 2019. Candida species isolated from various clinical specimens were subjected to speciation using standard yeast identification protocol and CHROM agar. Antifungal susceptibility testing was performed and interpreted for all the isolates of Candida using disc diffusion method as recommended by Clinical and Laboratory Standards Institute (CLSI) M44-A document guidelines. The inoculum was prepared by suspending five colonies of growth in 5 ml of sterile saline and compared the turbidity to 0.5 McFarland Standard. A cotton swab was dipped into the inoculum suspension and evenly streaked onto Mueller–Hinton agar supplemented with 2% glucose and 5 μg/ml methylene blue against Amphotericin B and Azole group of antifungals like Fluconazole, Itraconazole, Clotrimazole and Voriconazole.

Results: Among the 268 culture positive isolates 152(56.7%) were C. albicans and 116 (43.2%) were non candida albicans. Among NCA, 53(19.7%) were C. tropicalis followed by other species. Susceptibility pattern showed that Azole group 73.0% sensitive among C. albicans and 67.9% sensitive among C. tropicalis while in Amphotericin B sensitivity varies from 50 % to 100% to all isolated spp. of candida.

Conclusion: In this study Calbicans was the most common yeast isolated from all the clinical samples. The C. albicans and NCA showed highly susceptible to Amphotericin B, followed by Voriconazole.

Key words: Candida, antifungal, opportunistic infection, susceptibility

INTRODUCTION

Opportunistic infections by Candida sp are becoming quite common in hospitals today with antifungal resistance, an increasing problem in many wards. With interventions and management of diseases becoming more invasive and complicated, patients’ immunity can be affected due to various reasons. Apart from immunosuppression and immunodeficiencies from underlying causes such as chemotherapy, corticosteroids, surgery, malignancy, any manipulation, intervention or prolonged hospital stay increases the risk of infections due to Candida spp. and other fungal pathogens.¹,²

In Hospital acquired infection Candidiasis is the one of the leading causes with mortality noted between 15-35%.³ Candida albicans has been the commonest species causing infection for many years but discriminate use of azole group of drugs has lead to increase in NCA infection and resistance to antifungal drugs in candida species.⁴,⁵

The accurate species identification of Candida is important for the treatment, as not all species respond to the same antifungal drugs because of the problem of anti-fungal resistance.⁴ The aim of the present study was to know the prevalence of candida spp. at our hospital, to isolate and speciate candida spp. from various clinical specimens, to detect their antifungal susceptibility pattern.

MATERIALS AND METHODS

A total of 268 candida isolates from various Clinical specimens (blood, urine, sputum, pus, swab, ET fluid, vaginal swab etc. were taken up for the study. Duration of the study was from 7th June 2018 to 12th Mar 2019. The various clinical samples were collected and processed as per the standard microbiological procedures. They were screened for budding yeast like cells with the help of Gram stain, 10% KOH, and culture on Sabourad’s Dextrose Agar. The can-
did isolates which were obtained were further spe-
ciated by the germ tube test, chlamydospore formation
on cornmeal agar and inoculation on chromogenic
medium. The chromogenic medium, HiMedia CHROM agar, has chromogenic substances which
helps in the rapid identification of the candida species,
based on the reactions between the specific en-
zymes of the different species and the chromogenic
substances. As per the colour code which is provided
with the chromogenic media, C. albicans produces
blue-green colonies, C. tropicalis produces dark blue-
blue grey colonies, C. guillermondii produces blush
pink colonies, C. parapsilosis produces creamish to
pink, C. kefyr produces creamish, C. glabrata pro-
duces pink to mauve and C. krusei produces purple
colour colonies. The isolates were also identified on
the basis of microscopic morphological features of
the growth obtained on CMA (Corn Meal Agar) by
doing Dalmau technique. Also sugar assimilation
test were done. In sabouraud Dextrose Broth (SDB),
C. tropicalis shows surface pellicle and bubbling while
C. albicans, C. Parapsilosis, C. glabrata produces de-
posit and C. krusei produces side growth with surface
pellicle. Antifungal susceptibility testing was per-
formed and interpreted for all the isolates of Candida
using disc diffusion method as recommended by
Clinical and Laboratory Standards Institute (CLSI)

RESULTS

Table -1 shows Candida spp isolated in routine clinical
specimens were received during 7 th June - 2018
to 12 th Mar 2019 at our department.

Table 1: Candida spp. isolated from clinical specimens

<table>
<thead>
<tr>
<th>Candida isolate</th>
<th>Sputum (%)</th>
<th>Urine (%)</th>
<th>Blood (%)</th>
<th>Swab (%)</th>
<th>Pus (%)</th>
<th>ET (%)</th>
<th>V. swab (%)</th>
<th>Stool (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>126(47)</td>
<td>16</td>
<td>4(1.4)</td>
<td>1(0.3)</td>
<td>-</td>
<td>1(0.3)</td>
<td>4(1.4)</td>
<td>-</td>
<td>152(56.7)</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>36(13.4)</td>
<td>8(2.9)</td>
<td>3(1.1)</td>
<td>2(0.7)</td>
<td>2(0.7)</td>
<td>1(0.3)</td>
<td>-</td>
<td>-</td>
<td>53(19.7)</td>
</tr>
<tr>
<td>C. krusei</td>
<td>26(9.7)</td>
<td>10(3.7)</td>
<td>3(1.1)</td>
<td>-</td>
<td>-</td>
<td>2(0.7)</td>
<td>-</td>
<td>-</td>
<td>41(15.2)</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>7(2.6)</td>
<td>3(1.1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10(3.7)</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>5(1.8)</td>
<td>1(0.3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6(2.2)</td>
</tr>
<tr>
<td>C. guillermondii</td>
<td>4(1.4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4(1.4)</td>
</tr>
<tr>
<td>C. kefyr</td>
<td>1(0.3)</td>
<td>1(0.3)</td>
<td>10(3.7)</td>
<td>3(1.1)</td>
<td>2(0.7)</td>
<td>4(1.4)</td>
<td>4(1.4)</td>
<td>1(0.3)</td>
<td>205(76.4)</td>
</tr>
<tr>
<td>Total</td>
<td>205(76.4)</td>
<td>39(14.5)</td>
<td>10(3.7)</td>
<td>3(1.1)</td>
<td>2(0.7)</td>
<td>4(1.4)</td>
<td>4(1.4)</td>
<td>1(0.3)</td>
<td>268</td>
</tr>
</tbody>
</table>

Table 2: Isolated Candida spp. and its antifungal sensitivity pattern

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Isolates(n=268)(%)</th>
<th>Sensitive to Ampho.B</th>
<th>Sensitive to Azole group</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>152(56.7%)</td>
<td>132(86.8%)</td>
<td>111(73%)</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>53(19.7%)</td>
<td>41(77.3%)</td>
<td>36(67.9%)</td>
</tr>
<tr>
<td>C. krusei</td>
<td>41(15.2%)</td>
<td>36(87.8%)</td>
<td>33(80.4%)</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>10(3.7%)</td>
<td>6(60%)</td>
<td>2(20%)</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>6(2.2%)</td>
<td>3(50%)</td>
<td>5(83.3%)</td>
</tr>
<tr>
<td>C. guillermondii</td>
<td>4(1.4%)</td>
<td>3(75%)</td>
<td>3(75%)</td>
</tr>
<tr>
<td>C. kefyr</td>
<td>2(0.7)</td>
<td>2(100%)</td>
<td>2(100%)</td>
</tr>
</tbody>
</table>

DISCUSSION

A total of 268 Candida isolates from various clinical
specimens were included in our study, highest no. of
candida isolates are from sputum specimen (76.4 %),
followed by urine (14.5%). Studies which were done
earlier Khadka et al. and Sunayana M. Jangla et al.
have reported similar results.

Of the 268 candida isolates C. albicans was the pre-
dominant species (56.7%) followed by C. Tropicalis
(19.7%), C. krusei (15.2%), C. glabrata (3.7%),
C. parapsilosis (2.2%) and C. guillermondii (1.4%) and
C. kefyr (0.7%) respectively. Our finding shows simi-
lar prevalence scenario of Candida species to the
previous data reported by two independent groups
from India which showed C. albicans is more preva-
lent among the Candida isolates. Similar study conducted by Sajan et al. also reported C. albicans as the major isolate. Among the NAC species, C. tropicalis was most prevalent followed by C. krusei and C. glabrata respectively. Jayalakshmi et al. also showed that C. tropicalis (19.7%) was prevalent among the NCA species. Similar result has been depicted in various studies conducted in different countries of Europe. However, many studies have shown that NCA species have more isolation rate than C. albicans which suggest the emergence of non-albicans Candida species as important pathogens.

Speciation of Candida species by CHROMagar on the basis of colour differentiation offered a rapid, convenient and reliable method for identification of clinically important Candida species when compared with cumbersome traditional techniques. In developing countries, CHROMagar can be taken as a simple phenotypic test alternative to molecular based assay. CHROMagar has high sensitivity as well as specificity for the identification of Candida species. According to various finding from our regions, these four species are more prevalent, so we chose this medium for isolation of Candida spp. It facilitates the detection and identification of Candida species from mixed culture and provides results within 24–48 h.

The in vitro susceptibility testing of antifungal agents is becoming increasingly important because of the introduction of new antifungal agents and the recovery of clinical isolates that exhibit inherent or developed resistance to Amphotericin B, the Azole group of drugs during chemotherapy. The C. tropicalis isolates were 77.3% sensitive to Amphotericin B and showed 67.9% sensitive to Azole group of drugs. The C. albicans isolates were 86.8% sensitive to Amphotericin B, & showed 73% sensitive to Azole group of drugs. The C. krusei isolates were 87.8% sensitive to Amphotericin B, & 80.4% to Azole group of drugs and C. guillermontii isolates were 75% sensitive to Amphotericin B, & Azole group of drugs. The C. kefyr isolates were 100% sensitive to Amphotericin B and Azole group of drugs. The C. parapsilosis isolates were 50% sensitive to Amphotericin B and showed 83.3% sensitive to Azole group of drugs. The C. glabrata were 20% sensitive to Azole group of drugs & 60% sensitive to Amphotericin B.

In our study we found that C. albicans was the predominant species responsible for various Candidal infections. The species level identification by using of chrom agar medium will helpful to mycology laboratories for rapid screening of clinically important Candida spp. More importantly this capability will also enable clinicians to choose appropriate antifungal agents, thus decreasing cost effect and patient’s morbidity and mortality.

REFERENCES

15. Sunayana M,Jangla , Raji Naidu and Sofia C. Patel speciation and antifungal susceptibility testing of Candida isolates in various clinical samples in a tertiary care hospital. 2018;09(03) 106-111

